

AKROTEK® 💌 🚥 PK-VM GF 30 FR orange (8537)

PK GF30 FR(40)

AKROTEK® PK-VM GF 30 FR orange (8537) is a 30% glass fibre reinforced, flame retardant and process improved Polyketone compound, colored in orange similar to RAL 2003. The flame retardant system is free of red phosphorous and halogens. Due to its good chemical resistance, good dimensional stability and high elongation at break it is suitable for high voltage components in e-mobility.

Features		Regulatory	
hydrolysis / chemically stabilised	flame retardant	(UL)	
process improved E-Mobility		U	
Properties			
Modulus	Strength		Impact
8.600 MPa	125 MPa		70 kJ/m ²

Mechanical Properties

Tensile modulus	1 mm/min d.a.m.	8600 MPa
ISO 527-2	1 mm/min conditioned	8200 MPa
Tensile stress at break	5 mm/min d.a.m.	125 MPa
ISO 527-2	5 mm/min conditioned	120 MPa
Tensile strain at break	5 mm/min d.a.m.	3,5 %
ISO 527-2	5 mm/min conditioned	3,5 %
Charpy impact strength	23°C d.a.m.	70 kJ/m²
ISO 179-1/1eU	23°C conditioned	70 kJ/m²
Charpy notched impact strength	23°C d.a.m.	13 kJ/m²
ISO 179-1/1eA	23°C conditioned	15 kJ/m²

Thermal Properties

RTI electrical	UL 0,8mm Wall thickness	105 °C
UL 746B	UL 1,6mm Wall thickness	105 °C
	UL 3,2mm Wall thickness	105 °C
RTI impact	UL 0,8mm Wall thickness	70 °C
UL 746B	UL 1,6mm Wall thickness	70 °C
	UL 3,2mm Wall thickness	80 °C
RTI strength	UL 0,8mm Wall thickness	115 °C
UL 746B	UL 1,6mm Wall thickness	115 °C
	UL 3,2mm Wall thickness	125 °C
Temperature of deflection under load HDT/A	1,8 MPa	213 °C
Melting temperature ISO 11357-3	DSC, 10K/min	220 °C
Ball pressure test IEC 60695-10-2		> 115 °C
Coefficient of linear thermal expansion	23°C to 80°C parallel	0,14 10 ⁻⁴ /K
coefficient of infeat thermal expansion		

Flammability

Flammability	UL 0,8 mm Wall thickness	V-0 Class
UL 94	UL 1,6 mm Wall thickness	V-0 Class
	UL 3,2 mm Wall thickness	V-0 Class
GWFI	UL 0,8 mm Wall thickness	960 °C
IEC 60695-2-12	UL 1,6 mm Wall thickness	960 °C
	UL 3,2 mm Wall thickness	960 °C
GWIT	UL 0,8 mm Wall thickness	825 °C
IEC 60695-2-13	UL 1,6 mm Wall thickness	825 °C
	UL 3,2 mm Wall thickness	850 °C
HWI	UL 0,8 mm Wall thickness	0 PLC
UL 746A	UL 1,6 mm Wall thickness	0 PLC
	UL 3,2 mm Wall thickness	0 PLC
HAI	UL 0,8 mm Wall thickness	0 PLC
UL 746A	UL 1,6 mm Wall thickness	0 PLC
	UL 3,2 mm Wall thickness	0 PLC

Burning rate (<100 mm/min)	> 1 mm Thickness
FMVSS 302	

+

General Properties

Density ISO 1183	23°C	1,48 g/cm³
Humidity absorption ISO 1110	70°C, 62% r.H.	0,4 - 0,6 %
Molding shrinkage ISO 294-4	flow transverse	0,3 - 0,5 % 0,8 - 1,0 %

Electrical Properties

Volume resistivity IEC 62631-3-1	UL d.a.m.	10 ¹⁰ Ω x cm
Surface resistivity IEC 62631-3-2	UL d.a.m.	10 ¹³ Ω
Comparative tracking index IEC 60112	UL Test liquid A	600 V
Comparative tracking index ASTM D3638	UL	0 PLC
Dielectric strength IEC 60243	1 mm	29 kV/mm
Inclined-Plane Tracking, IPT ASTM D2303-13	UL	1 kV

Processing

The values mentioned are recommendations. We only recommend desiccant / dry air dryers or vacuum dryers. Too long a drying time and the resulting residual moisture content below the lower limit can lead to filling problems and surface defects. The specified drying time refers to closed and undamaged bagged material. When processing from previously opened bags or from octabins with polyolefin inliners, a longer drying time may be necessary. It is recommended to check the residual moisture content after the drying process.

0 - 4 80 °	D Drying time Drying temperature (τ <= -30°C)	(4)
0,02 - 0,1 9	Processing moisture	
60 - 80 °	1 Feed section	
210 - 240 °	2 Temperature Zone 1 - Zone 4	(5) (3) (2) (1)
230 - 240 °	3 Nozzle temperature	
230 - 240 °	4 Melt temperature	
60 - 100 °	5 Mold temperature	
300 - 800 ba	Holding pressure, spec.	
30 - 50 ba	Back pressure, spec.	
medium	Injection speed	
5 - 10 m/mi	Screw speed	

Polyketones crosslink depending on time and temperature, crosslinking is noticed by an increase of viscosity and/or dark spots in natural colored compounds. The melt temperature should be at or below 240 °C and under no circumstances go beyond 250 °C because crosslinking speed will increase. The use of a hot runner system is not recommended when processing polyketone. However, if it is used, it should be noted that the residence time in the barrel including the hot runner should not exceed 4 min. If interruptions of more than 4 minutes are expected, the barrel and hot runner need to be purged and cleaned with polyolefins. The molding machine needs to be purged with polyolefines before and after processing of AKROTEK® PK! There is a risk of cross linking caused by reactions with POM or PA as well as unsuitable masterbatches or cleaning compounds! Crosslinking is noticed by an increase of viscosity and or dark spots in natural colored compounds. In this case purge immediately with polyolefines. Further processing instructions are available on request.